Quantum Dynamical Entropy from Relative entropy
نویسنده
چکیده
In this exposition we prove an existence theorem for a quantum mechanical dynamical entropy based on von-Neumann’s measurement theory. To that end we introduced a Shannon type of information associated with a quantum channel or measurement based on Araki’s relative entropy. This is an invariance for the dynamics which generalizes Kolmogorov-Sinai ’s notion of dynamical entropy of a measure preserving transformation. In this context we also introduce a natural notion of channel capacity as a generalization of Shannon’s capacity of a channel and finds its relation with A.S. Holevo’s notion of capacity.
منابع مشابه
Observational Modeling of the Kolmogorov-Sinai Entropy
In this paper, Kolmogorov-Sinai entropy is studied using mathematical modeling of an observer $ Theta $. The relative entropy of a sub-$ sigma_Theta $-algebra having finite atoms is defined and then the ergodic properties of relative semi-dynamical systems are investigated. Also, a relative version of Kolmogorov-Sinai theorem is given. Finally, it is proved that the relative entropy of a...
متن کاملSome properties of the parametric relative operator entropy
The notion of entropy was introduced by Clausius in 1850, and some of the main steps towards the consolidation of the concept were taken by Boltzmann and Gibbs. Since then several extensions and reformulations have been developed in various disciplines with motivations and applications in different subjects, such as statistical mechanics, information theory, and dynamical systems. Fujii and Kam...
متن کاملEntropy operator for continuous dynamical systems of finite topological entropy
In this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. It is shown that it generates the Kolmogorov entropy as a special case. If $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
متن کاملRelative entropy optimization and its applications
In this expository article, we study optimization problems specified via linear and relative entropy inequalities. Such relative entropy programs (REPs) are convex optimization problems as the relative entropy function is jointly convex with respect to both its arguments. Prominent families of convex programs such as geometric programs (GPs), second-order cone programs, and entropymaximization ...
متن کاملThe concept of logic entropy on D-posets
In this paper, a new invariant called {it logic entropy} for dynamical systems on a D-poset is introduced. Also, the {it conditional logical entropy} is defined and then some of its properties are studied. The invariance of the {it logic entropy} of a system under isomorphism is proved. At the end, the notion of an $ m $-generator of a dynamical system is introduced and a version of the Kolm...
متن کامل